Interval Valued Fuzzy weak hyper bi-Γ-ideals in Γ – hypernear – rings

¹A.Kalaiarasi, ²N.Meenakumari, ³M.Navaneetha Krishnan

^{1,3} PG & Research Department of Mathematics, Kamaraj College(affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012), Thoothukudi, India.
 ²PG & Research Department of Mathematics, A.P.C.Mahalaxmi College for Women (affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012), Thoothukudi, India.
 ¹ranikalai1976@gmail.com, ²meenakumari.n123@gmail.com

Abstract:

In this paper we introduce interval- valued (i-v) fuzzy weak hyper bi- Γ -ideals in Γ -hyper near- rings and obtain some properties. An i-v fuzzy set $\overline{\eta}$ of M is called an i-v fuzzy weak hyper bi- Γ -ideal of M. if

(i)
$$\inf_{z \in x - y} \overline{\eta}(z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(y)\}$$
 for all $x, y \in M$.

(ii) $\overline{\eta}(x\alpha y\beta z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(y), \overline{\eta}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Keywords:

 Γ - hypernear-ring, i-v fuzzy ideal, i-v weak fuzzy ideal, fuzzy weak hyper bi- Γ -ideals

1.Introduction

Zadeh[7] introduced the concept of interval valued fuzzy subsets, where the values of the membership functions are intervals of numbers, instead of the numbers. Young Ban Jun[6] defined interval valued fuzzy R- subgroups of near-rings. N.Meenakumari and T.Tamizh Chelvam [5] studied the fuzzy bi- ideals in Γ -near- rings .The concept of hyper near-rings was first introduced by Dasic in [2]. Bijan Davvaz[1]defined the fuzzy hyper ideals of Γ -hyper near- rings. In this paper we introduce interval valued fuzzy hyper weak bi- Γ -ideals of Γ -hypernear- rings.

2.Preliminaries

Definition 2.1 [Bh.Satyanayana]

A Γ -near-ring is a triple $(M,+,\Gamma)$ where

(i) (M,+) is a (not necessarily abelian) group.

Γ is a non empty set of binary operators on M such that, for each α ∈ Γ, (M,+,α) is a right near-ring.

(iii)
$$x\alpha(y\beta z) = (x\alpha y)\beta z$$
 for all
 $x, y, z \in M$ and $\alpha, \beta \in \Gamma$

Definition 2.2

A Γ -near-ring M is said to be zerosymmetric, if $0 \gamma m = 0$ for all $m \in M$ and for all $\gamma \in \Gamma$.

Definition 2.3

A canonical hyper group is an algebraic structure (H,+) satisfying the following conditions:

- (i) for every $x, y, z \in H, x + (y+z) = (x+y) + z$
- (ii) there exists a $0 \in H$ such that 0+x=x+0=x for all $x \in H$
- (iii) for every $x \in H$ there exists a unique element $x' \in H$. Such that $0 \in (x+x') \cap (x'+x)$, (we call the element x' the opposite of x).

© 2019 JETIR February 2019, Volume 6, Issue 2

(iv)
$$z \in x + y$$
 implies $y \in -x + z$ and $x \in z - y$

Definition 2.4

A hyper near-ring is an algebraic structure $(R,+,\bullet)$ satisfying the following axioms:

- (i) (R,+) is a canonical hyper group
- (ii) With respect to the multiplication, (R,\bullet) is a semi group
- (iii) $x \bullet (y+z) = x \bullet y + x \bullet z_{\text{for}}$ all $x, y, z \in R$

Definition 2.5

A Γ - hyper near – ring is a triple $(M,+,\Gamma)$ where

- (i) Γ is a non-empty set of binary operators such that $(M,+,\alpha)$ is a hyper near-ring
- (ii) for each $\alpha \in \Gamma$, $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$

Example 2.6

Let M={0,a,b}and Γ be the non-empty set of binary operators. $\alpha, \beta \in \Gamma$ are defined as follows

+	0	a	b
0	{0}	{a}	{b}
a	{a}	{0, a, b}	{a,b}
b	{b}	{a, b}	{0, a, b}

Then $(M,+,\Gamma)$ is a Γ - hypernear- ring

Throughout this section M to denote a Γ -hyper near-ring unless otherwise specified.

Definition 2.7

A subset A of M is called a left (resp. right) hyper ideal of M if it satisfies

- (i) (A,+) is a normal subgroup of (M,+)
- (ii) $uax \in A (resp., (u+x)\alpha v u\alpha v \in A$ for all $x \in A, \alpha \in \Gamma$ and $u, v \in M$

A subset A of M is called a hyper-ideal of M if it is both a left hyper ideal and right hyper ideal.

Definition 2.8

A fuzzy set μ of M is called a fuzzy hyper bi- Γ ideal of M if

- (i) $\inf_{z \in x-y} \mu(z) \ge \min\{\mu(x), \mu(y)\}$
- (ii) $\mu(x\alpha y\beta z) \ge \min\{\mu(x), \mu(z)\}$ for all $x, y, z \in M$

Definition 2.9

By Interval number on[0,1] say \bar{a} we mean an interval such that $0 \le a^- \le a^+ \le 1$ and where a^- and a^+ are the lower and upper limits of \bar{a} respectively.

Definition 2.10 :

Let $\overline{\eta}$ be an i.v fuzzy subset of X and $[t_1, t_2] \in D[0,1]$. Then the set $\overline{U}(\overline{\eta}: [t_1, t_2]) = \{x \in X \mid \overline{\eta}(x) \ge [t_1, t_2]\}$ is called the upper level subset of $\overline{\eta}$.

Definition 2.11

An interval numbers $\overline{a} = [a^-, a^+]$ and $\overline{b} = [b^-, b^+]$ on [0, 1], we define

(i)
$$\overline{a} \leq \overline{b}$$
 if and only if $a^- \leq b^-$ and $a^+ \leq b^+$

(ii)
$$\overline{a} = \overline{b}$$
 $\overline{a} = \overline{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$

b

0

b

b

(iii)
$$\bar{a} + \bar{b} = [a^- + b^-, a^+ + b^+]$$

 $a^- + b^- \le 1$ and $a^+ + b^+ \le 1$

а

0

a

a

whenever

Defi			
nitio	α	0	
n 2.12	0	0	
2.12 Let <i>X</i>	а	0	
be	b	0	
anv			

	β	0	а	b		
	0	0	0	0		
	а	0	0	0		
	b	0	0	0		
set, A mapping						

 $\overline{A}: X \to D[0,1]$ is called an interval-valued fuzzy subset, [briefly i - v fuzzysub set] of X whenever D[0,1] denotes the family of all closed subintervals of [0,1] and

 $\overline{A}(x) = [A^{-}(x), A^{+}(x)]$ where $A^{-}(x)$ and $A^{+}(x)$ are fuzzy subsets of X.

Definition 2.13

A mapping Min^i from $D[0,1] \times D[0,1] \rightarrow D[0,1]$ given by

© 2019 JETIR February 2019, Volume 6, Issue 2

 $\min^{i}(\bar{a}, \bar{b}) = [\min(a^{-}, b^{-}), \min(a^{+}, b^{+})] \forall \bar{a}, \bar{b} \in D[0, 1]$ is called an interval Min-norm. **Definition 2.14**

Let $\overline{\mu}$, $\overline{\mu}_i$ be an interval valued fuzzy subsets of a set X. The following are defined by i) $\bigcup_{i\in\Omega} \overline{\mu}(x) = \sup^i \left\{ \overline{\mu_i}(x) / i \in \Omega \right\}$

ii) $\bigcap_{i\in\Omega}\overline{\mu}(x) = \inf^{i} \left\langle \overline{\mu}_{i}(x) / i \in \Omega \right\rangle$

Definition 2.15

An i-v fuzzy subset $\overline{\eta}$ of M is called an i-v fuzzy hyper bi- Γ -ideal of M if

i) $\inf_{z \in x - y} \overline{\eta}(z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(y)\}$ for all $x, y \in M$.

ii) $\overline{\eta}(x\alpha y\beta z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(z)\}$ for all $x, y \in M$ and $\alpha, \beta \in \Gamma$.

3. Interval valued fuzzy weak hyper bi- Γ ideal of Γ -hyper near-rings

In this section, we introduce the notion of i-v fuzzy hyper weak bi- Γ -ideal of M and discuss some of the properties.

Definition 3.1

If $\overline{\eta}$ and $\overline{\lambda}$ are i-v fuzzy subset of M. Then

 $\overline{\eta} \cap \overline{\lambda}, \overline{\eta} \cup \overline{\lambda}$ and $\overline{\eta} * \overline{\lambda}$ are fuzzy subset of

M defined by

 $(\overline{\eta} \cap \overline{\lambda})(x) = \min^{i} \{\overline{\eta}(x), \overline{\lambda}(x)\}$

 $(\overline{\eta} \bigcup \overline{\lambda})(x) = \max^{i} \{\overline{\eta}(x), \overline{\lambda}(x)\}$

$$(\overline{\eta} + \overline{\lambda})(x) = \begin{cases} \sup_{z \in x - y}^{i} \{\min^{i} \{\overline{\eta}(x), \overline{\lambda}(y)\} \} \\ 0, Otherwise \end{cases}$$
$$(\overline{\eta} * \overline{\lambda})(x) = \begin{cases} \sup_{x = yaz}^{i} \{\min^{i} \{\overline{\eta}(y), \overline{\lambda}(z)\} \} \\ 0, Otherwise \end{cases}$$

www.jetir.org (ISSN-2349-5162)

(i) $\inf_{z \in x-y} \overline{\eta}(z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(y)\}$ for all $x, y \in M$.

(ii) $\overline{\eta}(x\alpha y\beta z) \ge \min^{i} \{\overline{\eta}(x), \overline{\eta}(y), \overline{\eta}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Example : 3.3

Consider the Γ - hyper near-ring $(M,+,\Gamma)$ Let M=(0,a,b) and Γ be the non-empty set of binary operators such that $\alpha, \beta \in \Gamma$ Then (M,+) is a Γ -hyper near ring. We define a fuzzy set by $\mu(a) = [0.3,0.4], \mu(b) = [0.3,0.4],$ $\mu(0) = [0.3,0.5]$ By routin calculation, we can verify that μ is

By routin calculation, we can verify that μ is i-v fuzzy weak hyper bi- Γ -ideals of M.

Theorem : 3.4

Let $\overline{\eta}$ be an i-v fuzzy subset of M. Then $\overline{\eta}$ is an i-v fuzzy weak hyper bi- Γ -ideal of M if and only if $\overline{\eta} * \overline{\eta} * \overline{\eta} \subseteq \overline{\eta}$.

Proof :

Assume that $\overline{\eta}$ is an i-v fuzzy hyper weak bi- Γ -ideals of M. Let $x, y, z, y_1, y_2 \in M$ and $\alpha, \beta \in \Gamma$. Such that $x = y\alpha z$ and $y = y_1\beta y_2$. Then

$$(\overline{\eta} * \overline{\eta} * \overline{\eta})(x) = \sup_{x = y \alpha z}^{i} \{ \min^{i} \{ \overline{\eta}(y), \overline{\eta}(z) \} \}$$

 $= \sup_{x=y\alpha z}^{i} \{ \min_{y=y_{1}\beta y_{2}}^{i} \min_{y=y_{1}\beta y_{2}}^{i} \min_{y=y_{1}\beta y_{2}}^{i} \min_{y=y_{1}\beta y_{2}}^{i} \sup_{x=y\alpha z}^{i} \sup_{y=y_{1}\beta y_{2}}^{i} \sup_{y=y_{1}\beta y_{2}}^{i} \min_{y=y_{1}\beta y_{2}}^{i} \overline{\eta}(y_{1}\beta y_{2}\alpha z)$

Since η is an i-v fuzzy weak bi- Γ -ideal of M

$$\overline{\eta}(y_1\beta y_2\alpha z) \ge Min^i \left[\overline{\eta}(y_1), \overline{\eta}(y_2), \overline{\eta}(z) \right]$$

 $\subseteq \overline{\eta}(y_1\beta y_2\alpha z)$

If x cannot be expressed as $x = y \alpha z$, then

$(\overline{\eta} * \overline{\eta} * \overline{\eta})(z) = \overline{0} \subseteq \overline{\eta}(x)$ in both cases $(\overline{\eta} * \overline{\eta} * \overline{\eta})(z) \subseteq \overline{\eta}$

Definition 3.2

An i-v fuzzy set $\overline{\eta}$ of M is called an i-v -fuzzy weak hyper bi- Γ -ideal of M. if

JETIRAB06229 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 1249

© 2019 JETIR February 2019, Volume 6, Issue 2

Conversely, assume that $(\overline{\eta} * \overline{\eta} * \overline{\eta})(z) \subset \overline{\eta}$, For $x, y, z \in z$ and $\alpha, \beta, \alpha_1, \beta_1 \in \Gamma$ Let x' be such that $x' = x \alpha y \beta z$ Then $\overline{\eta}(x \alpha y \beta z) = \overline{\eta}(x') \supseteq (\overline{\eta} * \overline{\eta} * \overline{\eta})(x')$ $= \sup^{i} x' = p \alpha q \{ \min^{i} \{ (\overline{\eta} * \overline{\eta})(p), \overline{\eta}(q) \} \}$ $= \sup_{x'=p\alpha_1 q} \sup^{i} \left\{ \min^{i} \left\{ \sup^{i} \sup^{i} \min^{i} \{\overline{\eta}(P_1), \overline{\eta}(p_2)\}, \overline{\eta}(q)\} \right\} \right\}$ weak hyper bi- Γ -ideal of M. $\subseteq \overline{\eta} * \overline{\lambda}$

$$= \frac{\sup^{i}}{x' = p_1 \beta_1 p_2 \alpha_1 q} \{ \min^{i} \{ \overline{\eta}(P_1), \overline{\eta}(p_2) \}, \overline{\eta}(q) \}$$

 $\geq \min^{i}(\overline{\eta}(x),\overline{\eta}(y),\overline{\eta}(z))$

Hence $\overline{\eta}(x\alpha y\beta z) \ge \min^{i}(\overline{\eta}(x),\overline{\eta}(y)\overline{\eta}(z))$ is an i-v fuzzy weak hyper bi- Γ -ideal of M.

Theorem: 3.5

Let $\overline{\eta}$ and $\overline{\lambda}$ be an i-v fuzzy weak hyper bi- Γ -ideal of M. Then the products $\overline{\eta} * \overline{\lambda}$ and $\overline{\lambda} *$ $\overline{\eta}$ are also an i-v fuzzy weak hyper bi- Γ -ideals of M.

Proof:

Let $\overline{\eta}$ and $\overline{\lambda}$ be an i-v fuzzy weak hyper bi- Γ -ideals of M.

$$\inf_{z \in x-y} (\overline{\eta} * \overline{\lambda})(z) = \inf_{z \in x-y} \left[\sup_{z = u a v} {}^{i} \{ \min {}^{i} \{ \overline{\eta}(u), \overline{\lambda}(v) \} \right]$$

 $=\sup_{z=u\alpha\nu}^{i}\min^{i}\left\langle \inf_{u\in x-y}\overline{\eta}(u),\inf_{v\in x-y}\overline{\lambda}(v)\right\rangle$

$$\geq \sup_{z=u\alpha v} \min^{i} \{\min^{i} \{\overline{\eta}(x), \overline{\eta}(y)\}, \min^{i} \{\overline{\lambda}(x), \overline{\lambda}(y)\}\}$$

$$=\min^{i}[\sup_{z\in x-y}^{i}\min^{i}\{\overline{\eta}(x),\overline{\eta}(y)\},\sup_{z\in x-y}^{i}\min^{i}\{\overline{\lambda}(x),\overline{\lambda}(y)\}]$$

$$= \min^{i} \left\{ \overline{\eta} * \overline{\lambda}(z), \overline{\eta} * \overline{\lambda}(z) \right\}$$
$$\inf_{z \in x - y} (\overline{\eta} * \overline{\lambda})(z) \ge \min^{i} \left\{ \overline{\eta} * \overline{\lambda}(z), \overline{\eta} * \overline{\lambda}(z) \right\}$$

It follows that $(\overline{n} * \overline{\lambda})$ is an i-v fuzzy subgroup of M. Further, By theorem 3.3, It is enough if we prove $(\overline{\eta} * \overline{\lambda}) * (\overline{\eta} * \overline{\lambda}) * (\overline{\eta} * \overline{\lambda}) \subset \overline{\eta} * \overline{\lambda}$ Now $(\overline{\eta} * \overline{\lambda}) * (\overline{\eta} * \overline{\lambda}) * (\overline{\eta} * \overline{\lambda}) \subset \overline{\eta} * \overline{\lambda}$ $\subset \overline{\eta}^*(\overline{\lambda}^*\overline{\lambda}^*\overline{\lambda})$ Since $\overline{\lambda}$ is an i-v fuzzy

 $\therefore \overline{\eta} * \overline{\lambda}$ is an i-v fuzzy weak hyper bi- Γ -ideal of M. Similarly $\overline{\lambda} * \overline{\eta}$ is an i-v fuzzy hyper weak bi- Γ -ideal of M.

Theorem: 3.6

Let $\{\overline{\eta}_i / i \in \Lambda\}$ be family of i-v fuzzy weak hyper bi- Γ -ideals of M. Then $\bigcap_{i \in \Lambda} \overline{\eta}_i$ is also an i-v fuzzy weak hyper bi- Γ -ideal of M. Where \wedge is any index set.

Proof: Straightforward

Theorem 3.7

Let $\overline{\eta}$ be an i-v fuzzy subset of M. then $\overline{\eta}$ is an i-v fuzzy weak hyper bi- Γ - ideal of M iff $\overline{U(\eta}:[t_1,t_2])$ is a weak hyper bi- Γ - ideal of M for all $[t_1, t_2] \in D[0,1]$

Proof: Straightforward

Theorem: 3.8

Let $\overline{\eta} = [\eta^-, \eta^+]$ be an i-v fuzzy subset of M. Then $\overline{\eta}$ is an i-v fuzzy weak hyper bi- Γ -ideal of M if and only if η^-, η^+ are fuzzy weak hyper bi- Γ -ideal of M. **Proof**:

Assume that $\overline{\eta}$ is an i-v fuzzy weak hyper bi-

 Γ -ideal of Γ -hyper near-ring M for any

 $x, y, z \in M$ and $\alpha, \beta \in \Gamma$

Now

$$\inf_{z\in x-y}\eta^{-}(z), \inf_{z\in x-y}\eta^{+}(z) = \inf_{z\in x-y}\eta^{-}(z)$$

$$\geq \min^{i} \left\{ \overline{\eta}(x), \overline{\eta}(y) \right\}$$

$$= \left[\min\left\{\eta^{-}(x), \eta^{-}(y)\right\}, \min\left\{\eta^{+}(x), \eta^{+}(y)\right\}\right]$$

It follows that

$$\begin{bmatrix} \inf_{z \in x - y} \eta^{-}(z) \ge \min \left\{ \eta^{-}(x), \eta^{-}(y) \right\} \end{bmatrix} \&$$
$$\inf_{z \in x - y} \eta^{+}(z) \ge \min \left\{ \eta^{+}(x), \eta^{+}(y) \right\}$$
$$\begin{bmatrix} \eta^{-}(x \alpha y \beta z), \eta^{+}(x \alpha y \beta z) \end{bmatrix} = \overline{\eta}(x \alpha y \beta z)$$

 $\geq \min^{i} \left\{ \overline{\eta}(x), \overline{\eta}(y), \overline{\eta}(z) \right\}$

 $= \min \left\{ \left[\eta^{-}(x), \eta^{+}(x) \right], \left[\eta^{-}(y), \eta^{+}(y) \right], \left[\eta^{-}(z), \eta^{+}(z) \right] \right\}$ $= \min \left\{ \left[\eta^{-}(x), \eta^{-}(y), \eta^{-}(z) \right], \min \left[\eta^{+}(x), \eta^{+}(y), \eta^{+}(z) \right] \right\}$

It follows that

$$\eta^{-}(x \alpha y \beta z) \geq \min \left\{ \eta^{-}(x), \eta^{-}(y), \eta^{-}(z) \right\} \&$$

$$\eta^+(x \alpha y \beta z) \ge \min\left\{\eta^+(x), \eta^+(y), \eta^+(z)\right\}$$

Therefore η^-, η^+ are fuzzy hyper weak bi- Γ ideal of M.Conversely, Assume that η^-, η^+ are fuzzy hyper weak bi- Γ -ideal of Γ -hyper nearring M Let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ Then $\inf_{z \in x-y} \eta^-(z) \ge \min \left\{ \eta^-(x), \eta^-(y) \right\}$

$$\inf_{z \in x-y} \eta^{-}(z) \ge \min \left\{ \eta^{-}(x), \eta^{-}(y) \right\}$$

$$\inf_{z \in x-y} \overline{\eta}(z) = \left[\inf_{z \in x-y} \eta^{-}(z), \inf_{z \in x-y} \eta^{+}(z) \right]$$

$$\ge \left[\min \left\{ n^{-}(x), n^{-}(y) \right\} \min \left\{ n^{-}(x), n^{-}(y) \right\} \right]$$

$$\geq \left[\min\left\{\eta^{-}(x),\eta^{-}(y)\right\},\min\left\{\eta^{-}(x),\eta^{-}(y)\right\}\right] \text{And}$$

 $=\min^{i}\left\{\overline{\eta}(x),\overline{\eta}(y)\right\}$

www.jetir.org (ISSN-2349-5162) $\overline{\eta}(x\alpha y\beta z) = \left[\eta^{-}(x\alpha y\beta z), \eta^{+}(x\alpha y\beta z)\right]$

$$\begin{split} &\overline{\eta}(x\alpha y\beta z) = \left[\eta^{-}(x\alpha y\beta z), \eta^{+}(x\alpha y\beta z)\right] \\ &\left[\eta^{-}(x\alpha y\beta z), \eta^{+}(x\alpha y\beta z)\right] = \overline{\eta}(x\alpha y\beta z) \\ &\geq \min\left\{\left[\eta^{-}(x), \eta^{-}(y), \eta^{-}(z)\right], \min\left[\eta^{+}(x), \eta^{+}(y), \eta^{+}(z)\right]\right\} \\ &= \min\left\{\left[\eta^{-}(x), \eta^{+}(x)\right], \left[\eta^{-}(y), \eta^{+}(y)\right], \left[\eta^{-}(z), \eta^{+}(z)\right]\right\} \\ &= \min^{i}\left\{\overline{\eta}(x), \overline{\eta}(y), \overline{\eta}(z)\right\} \end{split}$$

= min $\{\eta(x), \eta(y), \eta(z)\}$ Therefore $\overline{\eta}$ is an i-v fuzzy weak hyper bi- Γ ideal of Γ -hyper near-ring M

References

- BijanDavvaz, Jianming Zhan, Kyug Ho KIM, fuzzy Γ-hypernear-rings, computers and mathematics with Applications 59 (2010) 2846-2853.
- 2. V.Chinnadurai et al.,Interval valued fuzzy weak bi-ideals of г-nearrings.J.Linear and Topological Algebra vol.06.No.03.2017,223-236.
- 3. V. Dasic, Hypernearrings, Fourth int. Congress on AHA (1990). World Scientific (99)
- 4. Y. B. Jun, K.H. Kim and M.A Oztwrk, On fuzzy ideals of Gamma near-rings. J. fuzzy math., 9 (2001), 51-58
- K.H.Kim, B.Dawaz. EH.Roh. On hyper R-subgroups of gamma-hypernear-rings Sci. Journal of Algebra and Discrete Structure, Vol 9 (2011) No. 1 & 2. PP 43-52.
- 6. N.Meenakumari,T.Tamizh chelvam,Fuzzy bi-ideals in gamma – near-rings,Journal of algebra and Discrete structure,vol 9(2011) No1&2.PP43-52.Fuzzy bi-ideals in Γnear-rings.
- Young Bae Jun, Interval-valued fuzzy R-subgroups of near-rings, Indian J. Pure Math., 33(1) 71-80 January 2002.
- L.A.Zadeh, The concept of linguistic variables and its application to approximate reasoning, inform Sci 8(1975) 199-249.